For example, Hinestroza says, name-brand clothing with nanofibers can be scanned at different points in the supply chain to ensure pirated clothing doesn't get into retail outlets or into your closet. Passports with nanofibers can be scanned to ensure their legitimacy. Ostensibly, paper money with nanofibers would help ensure fake twenties don't get into your wallet – or the grocer's till.
“The fibers can essentially serve as molecular bar codes,” Hinestroza says. “We can control the position, frequency and distribution of particles inside the fibers, and their signature.”
He also says that manufacturers wouldn't need to change the ways they make things in order to include the nanofibers.
“These fibers can be easily incorporated into existing textile manufacturing facilities,” Hinestroza said. “Textile products are the perfect vehicles for incorporating nanotechnology into commercial applications.”
The process used to create the nanofibers is called electrospinning, a textiles manufacturing process first used in the 1930s but now being put to use to create tiny fibers.
In their electrospinning research, the scientists apply electrical charges to water-based polymer solutions containing tiny nanoparticles, including magnetic particles or quantum dots, tiny particles that, depending on their size, display colors. When enough electrical charge is applied to the solution, an unstable jet – or narrow stream of solution and nanoparticles – moving like a whip through air, is formed. The whipping motion elongates the jet while the solvent evaporates, producing a tiny fiber containing the nanoparticles.
The researchers then tested the fibers and found the fibers had magnetic properties.
Hinestroza and Rinaldi have been invited to present their nanofiber findings at a number of academic conferences in the next few months.
The research is sponsored by a National Science Foundation Nanoscale Exploratory Research grant, and by the NC State Nanotechnology Steering Committee.
North Carolina State University